810 research outputs found

    Proteomik: Proteine im (Hefe-)Kontext

    Get PDF

    Distance, dissimilarity index, and network community structure

    Full text link
    We address the question of finding the community structure of a complex network. In an earlier effort [H. Zhou, {\em Phys. Rev. E} (2003)], the concept of network random walking is introduced and a distance measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-neighboring vertices of a network and design an algorithm to partition these vertices into communities that are hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case of artificially generated random modular networks, this method outperforms the algorithm based on the concept of edge betweenness centrality. For yeast's protein-protein interaction network, we are able to identify many clusters that have well defined biological functions.Comment: 10 pages, 7 figures, REVTeX4 forma

    Gecko diversity : a history of global discovery

    Get PDF
    1935 gecko species (and 224 subspecies) were known in December 2019 in seven families and 124 genera. These nearly 2000 species were described by ~950 individuals of whom more than 100 described more than 10 gecko species each. Most gecko species were discovered during the past 40 years. The primary type specimens of all currently recognized geckos (including subspecies) are distributed over 161 collections worldwide, with 20 collections having about two thirds of all primary types. The primary type specimens of about 40 gecko taxa have been lost or unknown. The phylogeny of geckos is well studied, with DNA sequences being available for ~76% of all geckos (compared to ~63% in other reptiles) and morphological characters now being collected in databases. Geographically, geckos occur on five continents and many islands but are most species-rich in Australasia (which also houses the greatest diversity of family-level taxa), Southeast Asia, Africa, Madagascar, and the West Indies. Among countries, Australia has the highest number of geckos (241 species), with India, Madagascar, and Malaysia being the only other countries with more than 100 described species each. As expected, when correcting for land area, countries outside the tropics have fewer geckos

    Network Topology of an Experimental Futures Exchange

    Full text link
    Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth is one of the examples. To better understand the working behind the complexity, we undertook an empirical study measuring the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and scale-free with a power law exponent of 1.02+-0.09 in the degree distribution. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19+-0.16.Comment: 6 pages, 12 figure

    Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

    Full text link
    We investigate a model protein interaction network whose links represent interactions between individual proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural fluctuations in different realizations. For biologically-relevant growth rates, the node degree distribution has an algebraic tail with a peculiar rate dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1; reference added and minor rewording of the first paragraph; Title change and major reorganization (but no result changes) in response to referee comments; to be published in PR

    Scale free networks from a Hamiltonian dynamics

    Full text link
    Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about equilibriu
    • …
    corecore